Showing posts with label study. Show all posts
Showing posts with label study. Show all posts

3.11.20

Zero to Pandas: Data Analysis with Python

Zero to Pandas: Data Analysis with Python

There are alot of Python courses out there that we can jump into and get started with. But to a certain extent in that attempt to learn the language, the process becomes unbearably long and frustratingly slow. We all know the feeling of wanting to run before we could learn how to walk; we really wanna get started with some subtantial project but we do not know enough to even call the data into the terminal for viewing.

Back in August, freeCodeCamp in collaboration with Jovian.ai, organized a very interesting 6-week MOOC called Data Analysis with Python: Zero to Pandas and as a self-proclaimed Python groupie, I pledged my allegiance! If there are any expectation that I've managed to whizz myself through the course and obtained a certificate, nothing of that sort happened; I missed the deadline cause I was busy testing out every single code I found and work had my brain on overdrive. I can't...I just...can't. Even with the extension, I was short of 2 Pythonic answers required to earn the certificate. But don't mistake my blunders for the quality of the content this course has to offer; is worth every gratitude of its graduates!

Zero to Pandas MOOC is a course that spans over 6 weeks with one lecture webinar per week that compacts the basics of Python modules that are relevant in executing data analysis. Like the play on its name, this course assumes no prior knowledge in Python language and aims to teach prospective students the basics on Python language structure AND the steps in analyzing real data. The course does not pretend that data analytics is easy and cut-corners to simplify anything. It is a very 'honest' demonstration that effectively gives overly ambitious future data analysts a flick on the forehead about data analysis. Who are we kidding? Data analysis using programming language requires sturdy knowledge in some nifty codes clean, splice and feature engineer the raw data and real critical thinking on figuring out 'Pythonic' ways to answer analytical questions. What does it even mean by Pythonic ways? Please refer to this article by Robert Clark, How to be Pythonic and Why You Should Care. We can discuss it somewhere down the line, when I am more experienced to understand it better. But for now, Packt Hub has the more comprehensive simple answer; it simply is an adjective coined to describe a way/code/structure of a code that utilizes or take advantage of the Python idioms well and displays the natural fluency in the language.

The bottom line is, we want to be able to fully utilize Python in its context and using its idioms to analyze data.

The course is conducted at Jovian.ai platform by its founder; Aakash and it takes advantage of Jupyter-like notebook format; Binder, in addition to making the synchronization available at Kaggle and Google's Colab. Each webinar in this course spans over close to 2 hours and each week, there are assignments on the lecture given. The assignments are due in a week but given the very disproportionate ratio of students and instructors, there were some extensions on the submission dates that I truly was grateful for. Forum for students is available at Jovian to engage students into discussing their ideas and question and the teaching body also conducts office hours where students can actively ask questions.

The instructor's method of teaching is something I believe to be effective for technical learners. In each lectures, he will be teaching the codes and module requires to execute certain tasks in the thorough procedure of the data analysis task itself. From importing the .csv formatted data into Python to establishing navigation to the data repository...from explaining what the hell loops are to touching base with creating functions. All in the controlled context of two most important module for the real objective of this course; Numpy and Pandas.

My gain from this course is immensely vast and that's why I truly think that freeCodeCamp and Jovian.ai really put the word 'tea' to 'teachers'. Taking advantage of the fact that people are involuntarily quarantined in their house, this course is something that should not be placed aside in the 'LATER' basket. I managed to clear my head to understand what 'loop' is! So I do think it can solve the world's problem!

In conclusion, this is the best course I have ever completed (90%!) on data analysis using Python. I look forward to attending it again and really finish up that last coursework.

Oh. Did I not mention why I got stuck? It was the last coursework. We are required to demonstrate all the steps of data analysis on data of our choice, create 5 questions and answer them using what we've learned throughout the course. Easy eh? Well, I've always had the tendency of digging my own grave everytime I get awesome cool assignments. But I'm not saying I did not do it :). Have a look-see at this notebook and consider the possibilities you can grasp after you've completed the course. And that's just my work...I'm a standard C-grade student.

And the exciting latest news from Jovian.ai is that they have upcoming course at Jovian for Deep Learning called Deep Learning with PyTorch: Zero to GANS! That's actually yesterday's news since they organized it earlier this year...so yeah...this is an impending second cohort! Tentatively, the course will start on Nov 14th. Click the link below to sign-up and get ready to attack the nitty-gritty. Don't say I didn't warn ya.


Deep Learning with PyTorch: Zero to GANS

And that's me, reporting live from the confinement of COVID pandemic somewhere in a developing country at Southeast Asia....

Share:

30.8.20

Esri MOOC: Do-It-Yourself Geo Apps by Esri

Esri has been releasing more and more MOOC over the span of 2 years to accommodate its increasingly large expanse of products within the ArcGIS ecosystem. 

And it all started with ArcGIS Pro that more or less jump start and brought forward a new dimension of map visualization in the cartography world. The idea is not new since many have developed and produced amazingly beautiful and very informative maps even before the sleek 64-bit ribbon-ned interface the ArcGIS Pro boasted. Compared to ArcMap that was developed in a 32-bit environment, ArcGIS Pro is a game changer that highlighted so many works that did NOT even utilize ArcGIS products to its full extent. 

But of all the MOOCs that I've participated in, 'Do-It-Yourself Geo App MOOC' must be the most underrated ones produced by Esri Training. The functionalities highlighted within the MOOC took the anthem right off their recent Esri UC 2020 that went virtual. The curriculum includes:
  1. The creation of hosted feature layer (without utilizing any GIS software medium like ArcMap or ArcGIS Pro).
  2. The basics of the ArcGIS Online platform ecosystem:
    • hosted feature layer >  web map > web app 
    • Basically, to view a hosted feature layer, you will need to drag it onto a 'Map' and save it as a web map.
    • Conventionally, web map suffices for the visualization and analytical work for the likes of any geospatialist who are familiar with Web GIS. 
    • But this time, Esri is highlighting a brand new web map product called 'Map Viewer Beta'. Why beta? Cause it is still in beta version but so sleeky cool that they just had to let every have a shot at using it. Truth be told, Map Viewer Beta did not disappoint.
    • Even so, Map Viewer Beta still has some functionalities that have yet to be implemented. 
  3. Using web map to visualize data, configure pop-up, execute simple analysis and extending it to Map Viewer Beta interface 
  4. Utilizing Survey123 for crowdsourcing data; the first level of citizen science and creating a webmap out of it.
  5. Creating native apps using AppStudio for ArcGIS; no coding required. 
  6. Some tidbits on accessing the ArcGIS API for JavaScript
I love how cool it is that this MOOC actually shows you step-by-step on how to use the new Map Viewer Beta and explain the hierarchy of formats for the published content in the ArcGIS Online platform

I have established my understanding of ArcGIS Online ecosystem 3 years back but I do find it awkward that such powerful information is not actually summarized in a way that is comprehensible for users that have every intention of delving into Web GIS. And Web GIS is the future with all the parallel servers that could handle the processing/analysis of large amount of data. ArcGIS Online is a simplified platform that provides interfaces for the fresh-eyed new geospatial professionals. 

It is quite well-know for the fact that there has been some criticism as to the domination of Esri within the GIS tools/resources within the geospatial science industry, but I believe it is something we could take as a pinch of salt. Not everything in Esri's massive line of commercial products are superior to other platforms but it is a starting point for any new geospatialists who wants to explore technologies there are not familiar with. 

All in all, this MOOC is heaven-sent. For me, I have been playing with the web apps and web maps for close to 4 years and I can attest to the fact that it covers all the basics. For the developer's bit, maybe not so much as going through it in a distinct step-by-step but it does stoke the curiosity as to how it works. The question is, how do we make it work. Now that's a mystery I am eager to solve. 

I'm going to put this on my ever-expanding to-do list and think JavaScript for another few more months of testing out this ArcGIS API for JavaScript implementation. Tell me if you wanna know how this actually works and I'll share what I find out when I do.

Till then, stay spatially mappy comrades!
Share: